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Summary

Patients with gastrointestinal

cancer undergoing abdomi-

nal or pelvic radiation treat-

ment (RT) as part of

multimodality care fre-

quently experience

unplanned hospitalizations

due to acute toxicities and

events. This study derived

and validated a machine

learning approach to predict
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Purpose: Patients with gastrointestinal (GI) cancer frequently experience unplanned

hospitalizations, but predictive tools to identify high-risk patients are lacking. We

developed a machine learning model to identify high-risk patients.

Methods and Materials: In the study, 1341 consecutive patients undergoing GI (abdominal

or pelvic) radiation treatment (RT) from March 2016 to July 2018 (derivation) and July

2018 to January 2019 (validation) were assessed for unplanned hospitalizations within

30 days of finishing RT. In the derivation cohort of 663 abdominal and 427 pelvic RT

patients, a machine learning approach derived random forest, gradient boosted decision tree,

and logistic regression models to predict 30-day unplanned hospitalizations. Model perfor-

mance was assessed using area under the receiver operating characteristic curve (AUC) and

prospectively validated in 161 abdominal and 90 pelvic RT patients using Mann-Whitney

rank-sum test. Highest quintile of risk for hospitalization was defined as “high-risk” and the
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high-risk patients. Validation

models discriminated high-

versus low-risk patients. In

abdominal RT patients, fre-

quency of hospitalization

was 39% versus 9% in pre-

dicted high- versus low-risk

groups (P < .001). In pelvic

RT patients, frequency of

hospitalization was 33% ver-

sus 8% (P = .002).
remainder “low-risk.” Hospitalizations for high- versus low-risk patients were compared

using Pearson’s x2 test and survival using Kaplan-Meier log-rank test.

Results: Overall, 13% and 11% of patients receiving abdominal and pelvic RT experi-

enced 30-day unplanned hospitalization. In the derivation phase, gradient boosted

decision tree cross-validation yielded AUC = 0.823 (abdominal patients) and random

forest yielded AUC = 0.776 (pelvic patients). In the validation phase, these models

yielded AUC = 0.749 and 0.764, respectively (P < .001 and P = .002). Validation mod-

els discriminated high- versus low-risk patients: in abdominal RT patients, frequency

of hospitalization was 39% versus 9% in high- versus low-risk groups (P < .001) and

6-month survival was 67% versus 92% (P = .001). In pelvic RT patients, frequency of

hospitalization was 33% versus 8% (P = .002) and survival was 86% versus 92%

(P = .15) in high- versus low-risk patients.

Conclusions: In patients with GI cancer undergoing RT as part of multimodality treat-

ment, machine learning models for 30-day unplanned hospitalization discriminated

high- versus low-risk patients. Future applications will test utility of models to prompt

interventions to decrease hospitalizations and adverse outcomes. � 2021 Elsevier Inc.

All rights reserved.
Introduction
Unplanned hospitalizations in patients with cancer are a

costly and frequent adverse outcome, with cancer patients

undergoing multimodality treatment especially at risk.1,2

Approximately 30% of patients with cancer experience

unplanned hospitalization within the first year after diagno-

sis,3 and risks of hospitalization persist during the entire

cancer care delivery trajectory.4,5 Patients with gastrointes-

tinal (GI) cancers, including those undergoing radiation

treatment (RT), are at particularly high risk for unplanned

hospitalizations, due to the frequent need for multimodality

treatment in this population especially for advanced stage

cancers, leading to fluid and electrolyte abnormalities,

infection, or significant symptoms that may be further com-

plicated by patients’ frailty or comorbidities.3,5-10 A prior

study observed a 30-day hospital readmission rate in

patients with GI cancer as high as 13% to 22% after index

hospitalization.5

Although the causes of unplanned hospitalizations and

acute care utilization in cancer patients may be potentially

avoidable or amenable to early mitigation, tools to help pro-

spectively identify patients at high-risk are still needed.11

The factors that play a role in a patient’s risk of unplanned

hospitalization during or after radiation therapy are wide-

ranging, including sociodemographic characteristics, clini-

cal characteristics, such as comorbidity and tumor charac-

teristics, and treatment variables such as chemotherapy

regimens, surgical details, and radiation therapy. Machine

learning (ML) may provide a robust and useful strategy to

account for complex factors predicting patients’ risk of hos-

pitalization, with further promise if applied for patient risk

stratification and intervention.12 However, in a recent study

that derived an ML predictive model for unplanned hospi-

talizations in cancer undergoing RT, the model was less dis-

criminatory for patients with GI cancer, with higher

frequency of false positive predictions.8 Discriminating
high- versus low-risk patients GI with cancer remains a per-

sistent challenge for ML-based risk stratification, due to

their overall high frequency of needing acute care. There-

fore, we sought to derive a novel predictive model using a

ML approach focused on patients with GI cancer, incorpo-

rating risk factors ascertained before the start of abdominal

or pelvic RT, to predict 30-day unplanned hospitalizations

in this patient group, which frequently undergoes multimo-

dality treatment. We also sought to evaluate the model

performance in prospectively identifying patients as

low- versus high-risk in a validation cohort. Finally, we

secondarily sought to evaluate overall survival in patients

classified in the validation analysis as low- versus high-risk

patients.
Methods and Materials
Patient sample and data sources

The M.D. Anderson Cancer Center Institutional Review

Board approved this study. We included consecutive

patients ages ≥18 years old with a diagnosis of GI malig-

nancy treated with abdominal (ie, stomach or gastroesoph-

geal junction, pancreatic, hepatobiliary, or related lymph

node sites of the abdomen) or pelvic (ie, anus, rectum, or

related lymph node sites of the pelvis) RT as a component

of their cancer therapy at our institution between March

2016 and January 2019, for a total of 1341 consecutive

cases treated with RT targeting abdominal or pelvic radia-

tion fields. Candidate features tested in predictive models

were extracted from electronic data sources: the radiation

treatment prescription and field variables were obtained

from the radiation record and verify system and institutional

radiation treatment electronic data workflow support data-

base, and patient, sociodemographic, comorbidity, and clin-

ical variables (eg, laboratory values, cancer-directed
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treatment, stage), using automated extraction from the elec-

tronic medical record (EMR; Epic). Data across sources

were integrated using a proprietary oncology analytics plat-

form (Oncora Analytics, Philadelphia, PA) for analytical

modeling.13
Predictor and outcome variables

We extracted 787 predefined candidate clinical and treat-

ment variables, including details about demographics (9),

medical history (389), laboratory values within 30 days of

RT (classified based on the institution’s laboratory ranges

for normal values; 217), tumor/stage (31), surgery (104),

chemotherapy (19), and radiation (18), which were candi-

date features for training predictor models (Appendix E1).

As a descriptor variable for treatment, multimodality cancer

care was defined as a cancer-directed surgery within

90 days before to 90 days after RT, or chemotherapy within

180 days before to 180 days after RT.

The primary outcome extracted from the EMR was claims

coding any unplanned hospitalization during RT through

30 days after the date of RT completion.14 Planned hospital-

izations, for example, expected admissions for curative cancer

surgery were not categorized as an unplanned hospitalization.

Charges were obtained from billing records. The secondary

outcome of all-cause mortality was extracted from the EMR

vital status and tumor registry records. To ensure the quality

and accuracy of EMR extracted outcomes definition, 15 ran-

domly selected episodes of care were manually reviewed,

abstracted, and verified for causes of hospitalization (K.C.).

Statistical analysis

Among 824 abdominal cases and 517 pelvic cases, separate

cohorts were analyzed for the model derivation phase

(including patients with RT between March 2016 and July

2018) and model validation phase (including patients with

RT between July 2018 and January 2019). The derivation

cohorts included 663 abdominal RT patients and 427 pelvic

RT patients; validation cohorts included 161 abdominal RT

patients and 90 pelvic RT patients. Descriptive statistics

were calculated to describe percentage of unplanned hospi-

talizations and top admission diagnoses (other than

“cancer”).

In the abdominal and pelvic RT derivation cohorts, ran-

dom forest, gradient boosted decision tree, and logistic

regression models were each derived for the outcome of 30-

day unplanned hospitalizations. To avoid overfitting, varia-

bles with very low variance (variance below a threshold of

0.15) were removed. Model selection was performed using

5-fold cross validation, using area under the receiver operat-

ing characteristic curve (AUC) to measure performance. The

best performing models were then tested on validation

cohorts, where AUC was used to measure performance. The

Mann-Whitney rank-sum test was used to compare the mod-

els’ discernment for the outcome of hospitalization versus
the null (AUC = 0.5), representing no discernment for the

outcome. A predefined AUC threshold of 0.7 was considered

clinically meaningful.15 The bootstrapped confidence inter-

vals for AUC values were based on 1000 resamples. In sensi-

tivity analyses, parsimonious models limited to the top 50

performing features were derived for the abdominal and pel-

vic derivation validation cohorts using the same model deri-

vation methods as outlined. For the best performing

parsimonious model in each cohort, AUCs were also calcu-

lated based on the respective validation sets.

Within each validation cohort, patients were classified as

“high-risk” for 30-day unplanned hospitalization based on an

a priori definition of patients in the highest quintile

(20th percentile) of predicted hospitalization risk. Remaining

patients were classified as “low-risk.” We used the Pearson’s

x2 test to compare frequencies of observed versus expected

hospitalizations in high- versus low-risk groups and compared

observed and expected hospitalization outcomes within

groups. We additionally conducted sensitivity analyses with

patients classified as high- versus low-risk using alternate cut-

points (15th percentile and 25th percentile) for comparison

with the primary selected cutpoint of 20th percentile.

For survival analysis, time to death was calculated

from the date of RT start and cases were censored at last

date of follow-up. Survival outcomes were estimated

using the Kaplan-Meier method and log-rank test, com-

paring survival in expected high- versus low-risk groups.

Analyses were conducted using SAS version 9.3 (Cary,

NC) using 2-tailed test and P value < .05 considered sta-

tistically significant.
Results
Patient characteristics

TaggedPMedian age of patients in the abdominal cohort was 66 years

old (interquartile range [IQR], 59-73) and 60% were men.

The median age in the pelvic cohort was 57 years old (IQR,

49-66) and 48% were men. Median duration of follow-up

for the validation abdominal and pelvic cohorts were

7.9 months (IQR, 4.5-10.2) and 9.1 months (IQR, 6.7-10.4),

respectively. Almost all patients, 93%, received a multi-

modality cancer treatment trajectory, with surgery (within

90 days) and chemotherapy (within 180 days) delivered

during patients’ cancer care trajectory. A total of 81%

received chemotherapy concurrent with the RT course.

Additional patient characteristics are detailed in Table 1.
Unplanned hospitalizations within 30 days of
completing abdominal or pelvic RT

Frequency of 30-day unplanned hospitalizations for the

entire cohort was 12.3%. Specifically, frequency was

13.3% in the abdominal cohort and 10.7% in the pelvic

cohort. Among these hospitalizations, median length of



Table 1 Patient, tumor, and treatment characteristics for the

entire study cohort (N = 1341)

Characteristic

Abdominaln n

of 824 (%)

Pelvic n of 517

(%)

Age (y)

Median (IQR) 66.3 (58.7, 73.2) 57.6 (49.4, 65.9)

Sex

Male 492 (60) 248 (48)

Female 332 (40) 269 (52)

Race and ethnicity

White, non-Hispanic 561 (68) 347 (67)

Black, non-Hispanic 58 (7) 50 (10)

Hispanic 105 (13) 71 (14)

Other 100 (12) 49 (9)

Insurance

Medicare 427 (52) 148 (28)

Private 327 (40) 309 (60)

Medicaid 4 (<1) 10 (2)

Other 66 (8) 50 (10)

Stage

I 106 (13) 35 (7)

II 181 (22) 61 (12)

III 227 (27) 212 (41)

Recurrent/M+ 310 (38) 209 (40)

Treatment intent

Curative 488 (59) 404 (78)

Consolidative 184 (22) 29 (6)

Palliative 153 (19) 84 (16)

Treatment technique

3D 202 (25) 265 (51)

IMRT 515 (62) 249 (48)

SBRT 105 (13) 0 (0)

Proton 2 (<1) 3 (<1)
Radiation treatment dose and fractionation

Median dose (Gy) (IQR) 50.0 (36.0, 60.0) 50.4 (39.0, 50.4)

Median fractions (IQR) 15 (10, 25) 27 (25, 28)

Concurrent chemotherapy

Yes 483 (59) 421 (81)

No 341 (41) 96 (19)

Serum sodium (mEq/L)

Median (IQR) 141 (138, 143) 141 (139, 143)

Serum chloride (mEq/L)

Median (IQR) 103 (101, 105) 103 (101, 105)

Serum albumin (gm/dL)

Median (IQR) 4.0 (3.7, 4.2) 4.2 (3.9, 4.4)

Hemoglobin (gm/dL)

Median (IQR) 11.9 (10.6, 13.1) 12.6 (11.2, 13.8)

Abbreviations: 3D = 3-dimensional radiation therapy; IMRT = inten-

sity modulated radiation therapy; IQR = interquartile range; M+ = meta-

static disease; SBRT = stereotactic body radiation therapy.

Table 2 Causes of unplanned hospitalization for patients

who received abdominal or pelvic RT

Patients who received abdominal RT n (of 49) (%)

Fever 8 (16)

Abdominal pain 7 (14)

Cholangitis 7 (14)

Nausea with vomiting 7 (14)

Acute kidney failure 4 (8)

Obstruction of bile duct 4 (8)

Altered mental status 3 (6)

Management of vascular access device 3 (6)

Malignant neoplasm of pancreas 3 (6)

Pneumonia 3 (6)

Patients who received pelvic RT n (of 22) (%)

Malignant neoplasm of rectum 5 (23)

Diarrhea 4 (18)

Gastrointestinal hemorrhage 4 (18)

Pain 3 (14)

Chest pain 2 (9)

Constipation 2 (9)

Malignant neoplasm of anal canal 2 (9)

Abbreviation: RT = radiation treatment.
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stay was 5 days (IQR, 3-10). Common causes of hospitali-

zation included fever and infection, abdominal and chest

pain, nausea with vomiting, diarrhea, constipation, and gas-

trointestinal hemorrhage (Table 2). Among patients who

had unplanned hospitalization, the excess health care

charges through 30-day follow-up for abdominal RT

patients who were hospitalized versus not hospitalized was

$52,435 and for pelvic RT patients was $49,402.
Model derivation and validation in the abdominal
RT cohort

The most common primary diagnoses in the abdominal RT

cohort were 49% pancreatic, 19% hepatobiliary, and 13%

gastric cancer. The cross-validation AUC values in the deri-

vation cohort were 0.823 for gradient boosted decision

trees, 0.806 for random forest, and 0.808 for logistic regres-

sion. In the validation cohort, the best performing model

(gradient boosted decision tree) demonstrated good perfor-

mance with an AUC of 0.749 (95% confidence interval

[CI], 0.595-0.822; P < .001). Variables with the highest fea-

ture importance in this predictive model included: treatment

site (pancreas, stomach, liver, or other), and key laboratory

values within the 30 days before RT (including sodium,

high density lipoproteins, calcium, aspartate aminotransfer-

ase, hematocrit, albumin, platelets, neutrophils, chloride,

and alkaline phosphatase), as well as RT dose.
Model derivation and validation in the pelvic RT
cohort

The most common primary diagnoses in the pelvic RT

cohort were 76% rectal and 18% anal cancer. The cross-val-

idation AUC values in the derivation cohort were 0.771 for

gradient boosted decision trees, 0.776 for random forest,

and 0.753 for logistic regression. In the validation cohort,

the best performing model (random forest) demonstrated

good performance, with an AUC of 0.764 (95% CI, 0.601-

0.871; P = .002). Variables with the highest feature impor-

tance included: key laboratory values within the 30 days

before RT (including chloride, hemoglobin, sodium, total
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protein, hematocrit, platelets, potassium, and sodium), body

mass index, and days spanning RT duration.

See Table E1 for top feature importance for the best per-

forming models in the abdominal RT and pelvic RT cohorts

in, Figure E1 for calibration curves for these models, and

Table E2 for AUCs for the alternate model algorithms in

the validation cohorts. A comparison of patient characteris-

tics for derivation and validation populations in Table E3.

In sensitivity analyses, parsimonious models (limited to the

top importance 50 features Table E1) were derived and

then validated. The AUC of 0.694 (gradient boosted deci-

sion tree) for the abdominal RT validation cohort and the

AUC of 0.696 (random forest) for the pelvic RT validation

cohort using this parsimonious approach. AUCs for the

alternate parsimonious model algorithms are in Table E2.
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Fig. 1. Unplanned hospitalization: observed and mean

expected 30-day frequency of unplanned hospitalizations in

predicted low-risk and high-risk patients after receiving

(a) abdominal radiation treatment or (b) pelvic radiation

treatment.
Outcomes in high- versus low-risk patients for 30-
day unplanned hospitalization in the validation
cohort

In patients undergoing abdominal RT, the actual (observed)

frequency of 30-day unplanned hospitalizations was 39.4%

versus 9.4% in the high-risk versus low-risk patients (P <
.001). These observed frequencies of hospitalization were

similar to the expected hospitalization frequencies (mean pre-

diction; 30.1% vs 3.8%, respectively). In patients undergoing

pelvic RT, the observed unplanned hospitalization frequency

was 33.3% versus 8.3% in high- versus low-risk patients

(P = .002). Expected frequencies (mean prediction) were

27.9% versus 7.6%, respectively (Fig. 1a-b). See Table E4

for within risk strata comparisons and Table E5 for sensitiv-

ity analysis of alternate cutpoints to define the threshold defi-

nition for high- versus low-risk for hospitalization.

In the validation cohorts, median overall survivals were

not yet reached (Fig. 2a-b). For patients receiving abdomi-

nal RT, 6-month actuarial survival for patients with high-

versus low-risk for 30-day unplanned hospitalization were

67% versus 92% (P = .001). For patients receiving pelvic

RT, 6-month actuarial survival for high- versus low-risk

patients was 86% versus 96% (P = .15).
Discussion
In this cohort of patients with GI cancer, tailored ML mod-

els trained to predict 30-day unplanned hospitalizations

were clinically meaningful (AUC >0.7), and in prospective

validation, effectively discriminated high- versus low-risk

patients. The observed frequency of hospitalization among

high-risk patients with GI cancer after abdominal or pelvic

RT was substantial, approximately 30% in both groups.

Although these hospitalizations were emergent or urgent

(not elective), many causes of admission were potentially

avoidable, including pain, infection, and GI symptoms.

Although models were trained to predict the acute event of

hospitalizations, the data provided a promising signal that
the models could further effectively discriminate subse-

quent all-cause mortality risk, with significant differences

seen in the abdominal RT patients and marginal signifi-

cance for pelvic RT patients. The predictive power of this

risk-stratification approach for survival outcomes will

require additional follow-up, but these early results suggest

that future iteration and application of these models in clini-

cal settings for early risk prediction and symptom interven-

tion could have an effect not only on health care utilization

but also potentially on key clinical outcomes such as

mortality.16,17

Risks and predictors of acute care events (hospitalizations

and emergency room visits) in cancer patients after chemo-

therapy have been examined in prior studies, although less

so after RT.6,8,10,11,17-20 Prior studies identified risk factors

associated with hospitalizations, including age, comorbidity,

abnormal laboratory values, recent chemotherapy, and pain

or patient reported symptoms.18,21-23 However, beyond clas-

sical models used in prior predictive models and algorithms,

ML methods such as tree-based models, ensemble methods,

and neural networks now represent a novel approach that

could improve predictions of acute care events after cancer

therapy.6,8,24,25 Results from our model specifically trained

on patients with GI cancer, primarily comprised of patients

with primary diagnosis of pancreas, hepatobiliary, gastric,
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rectal, or anal cancer, almost all receiving multimodality

treatment, building on the recent data indicating that patients

with GI cancer are at especially high risk for hospitalization,

for example, 13% to 22% within 30 days of an index hospi-

talization in a prior study.5 In a prior ML model, prediction

for acute events was trained on patients with cancers of all

sites, and the model performed with less precision in GI

patients.8 Subsequent validation and application of that

model in a prospective, randomized study confirmed that GI

patients were disproportionately at highest risk for hospitali-

zation.12 Those randomized results suggested that in a gen-

eral cohort of patients with cancer comprised of many

different disease or treatment sites, patients with GI cancer

tended to be categorized relatively homogeneously as high-

risk, compared with lower risk patients for hospitalization

such as those with breast cancer.12 Our study advances from

the prior findings by using a tailored model to better stratify

an overall high-risk group of GI patients for hospitalization,

in whom accurately predicting those patients truly requiring

high intensity monitoring or intervention is particularly
difficult.8 Results of our study highlight the utility of the data

analytics and integration platform with automated EHR-

based data extraction for this tailored modeling approach.

Our results improve both the model fit and the clinical appli-

cability of findings for GI patients as a resource-intensive

patient population. More accurately discerning subsets of

high- or low- risk GI patients is necessary to promote high-

value GI cancer care, especially when resources are finite for

applying the high-intensity acute clinical evaluation and tox-

icity management approach that is resource intensive.12

Our findings additionally demonstrate that the RT deliv-

ery setting serves as a useful setting for both risk prediction

and intervention and a unique opportunity for deriving and

applying ML-based acute event risk prediction, given the

high density of health care interactions during the RT

course and the sequencing of RT within the multimodality

therapeutic strategies. Together, these characteristics of the

RT care delivery setting, especially for high-risk popula-

tions, such as patients with GI cancer receiving multimodal-

ity care, represent an opportunity to proactively assess and



Volume 111 � Number 1 � 2021 Machine learning model in GI cancer patients 141
intervene in patients using strategies such as enhanced care

coordination, standardized pathways for symptom manage-

ment, and early use of palliative therapy.2 Future imple-

mentation testing seeks to determine prospective feasibility

of implementing a complex model with a high number of

features on a wider scale. Embedding risk score calculation

into usual workflows through integration with electronic

medical record systems is another key component of imple-

mentation.

Our findings are therefore relevant to the recently identi-

fied health care delivery priority of reducing acute care

events in cancer patients, dominated by unplanned hospital-

izations, which exact tremendously costly resources from

the health care system, up to 48% of national spending on

cancer care, and have triggered the emergence of reducing

unplanned hospitalization in this population as a key quality

cancer care delivery goal of Centers for Medicare and Med-

icaid Services.2 Future prospective application of this model

tailored for GI patients will evaluate for the contribution to

reducing acute care events and contributing to value in care.

A limitation of this analysis is that hospitalizations were

assessed at our single institution and therefore could have

underreported hospitalizations occurring outside the institu-

tion, decreasing sensitivity of findings.26 The external valida-

tion and prospective testing of the proposed model to inform

intervention are needed, and this work is ongoing. The imple-

mentation testing needed will include applying the more

complex models as tested in this study, compared with parsi-

monious models as presented as sensitivity results, given the

tradeoff between model fit versus the complexity of incorpo-

rating a large number of feature data. Implementation testing

will also include applying a similar methodologic approach to

derive models to understand, which common important fea-

tures persist across different clinical settings versus which

local features are uniquely needed to tailor a model to a spe-

cific health care delivery environment or patient population.

Future model iterations can also account for incoming clinical

data, beyond the features extracted in the pre-RT time span,

thereby being able to better incorporate sudden changes in the

patient’s condition that could meaningfully change the risk

prediction and improve precision of the risk prediction.
Conclusions
Machine learning models tailored to GI cancer patients

demonstrated good performance in training and validation

cohorts for predicting risks of unplanned hospitalizations

within 30 days of RT. In prospective validation, high-risk

patients identified by these tailored models had approxi-

mately 30% hospitalization risk and trend toward worse all-

cause mortality. Future pragmatic tools incorporating tai-

lored ML model findings, deployed in clinical settings, may

represent a valuable opportunity to prospectively identify

patients with high-risk GI cancer and implement interven-

tions to mitigate adverse outcomes.
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